咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >基于改进SVM算法的高压断路器故障诊断 收藏
基于改进SVM算法的高压断路器故障诊断

基于改进SVM算法的高压断路器故障诊断

作     者:盖曜麟 

作者单位:内蒙古农业大学 

学位级别:硕士

导师姓名:葛丽娟

授予年度:2021年

学科分类:12[管理学] 080801[工学-电机与电器] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 0808[工学-电气工程] 08[工学] 081104[工学-模式识别与智能系统] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主      题:高压断路器 自适应粒子群 支持向量机 故障诊断 

摘      要:高压断路器作为电力系统中重要的保护和控制设备,其运行状态稳定与否对电力系统的正常运行至关重要。高压断路器的分合闸动作由操动机构衔接控制回路完成,由于断路器各部件布置紧密复杂,易出现各类电气、机械故障。高压断路器的开断运作伴随着各类信号的变化,即各类伴随信号可以反映断路器的运行状态,从而通过监测和处理各类伴随信号,建立故障诊断模型对断路器的主要故障进行及时的识别、排查和诊断是实现其状态检修和保障电网安全运行的关键。在此背景下,本文从分合闸线圈电流信号和动触头位移信号的采集、特征提取出发,结合改进的SVM算法对高压断路器的电气、机械故障进行故障诊断。详细研究内容如下:(1)本文以分合闸线圈电流信号和动触头位移信号为研究对象,分析了两种信号的相关理论及可以反映的故障类型。然后提取分合闸电流信号中峰谷电流值、峰值电流时刻、谷值电流时刻等7维特征及动触头位移信号中的3维特征作为故障诊断的重要判据并融合为10维多源特征量。(2)针对所提取的高维数据特征量,本文选择PCA算法(Principal Component Analysis,主成分分析)对10维多源特征进行数据降维,以累积贡献率K(m)为评判指标,取K(m)≥95%时的特征量代表原始数据,确定最终特征集。(3)针对高压断路器此类小故障样本的数据特征,本文选择SVM算法(Support Vector Machine,支持向量机)作为诊断的基础算法,为进一步提高诊断精度和效率,本文提出了基于APSO-PCA-SVM算法的高压断路器故障诊断模型,并采用Griewank评价函数测试并验证了其相较于PSO-SVM和GA-SVM算法的优越性,最终采用APSO(Adaptive Particle Swarm Optimization,自适应粒子群)算法对SVM惩罚因子及核参数寻优,建立了APSO-PCA-SVM故障诊断模型。(4)以ZW10-40.5kV VD4真空断路器作为研究对象,本文模拟了除正常状态外的四种常见电气和机械故障状态:控制回路电压低、传动机构松动、铁芯空行程偏大、电磁铁卡涩。通过选择适配传感器分别采集五种状态下的分合闸电流信号和动触头位移信号作为故障诊断的数据支撑,实例分析结果表明,该方法能够最大程度去除冗余信息,简化了诊断模型的同时提高了诊断精度和效率,诊断准确率可达96.67%,在故障样本较少时采用有限特征量即可较为全面准确的实现对高压断路器此类小样本设备的高效故障诊断。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分