面向算力网络的微服务调度策略研究与实现
作者单位:东南大学
学位级别:硕士
导师姓名:董永强;王宏宇
授予年度:2021年
学科分类:08[工学] 080402[工学-测试计量技术及仪器] 0804[工学-仪器科学与技术]
摘 要:云计算与边缘计算的快速发展,助力算力从云端下沉到边缘,形成泛在的计算资源。为推动计算和网络资源的深度融合,研究人员提出了算力网络的概念。在算力网络的架构中,算力服务层是联系算力资源和用户需求的桥梁,可基于微服务架构实现,灵活地为用户需求提供特定的服务实例。因此,研究面向算力网络的微服务调度策略,对算力网络的进一步落地实施具有重要的意义。现有工作中,Kubernetes服务编排系统和以Istio为代表的服务网格是云中心主流的微服务部署和调度平台。然而,在微服务部署方面,Kubernetes原生策略的评价指标只包括CPU和内存信息,而未考虑网络、磁盘等其它维度资源的状况,导致资源负载的不均衡;在微服务调度方面,当大量任务需求到达时,由于Istio默认使用轮询机制,缺乏高效算法,容易引起服务调度性能下降。针对上述问题,本文以算力网络架构的服务层为基础,对目前云中心的微服务部署和调度工作开展研究与优化,并将云端提出的优化策略拓展至边缘,实现边缘侧的服务协同。本文的具体工作如下:(1)设计一种融合多维资源的微服务部署优化策略。针对Kubernetes部署微服务时原生策略资源信息利用不充分的问题,本文提出的优化策略拓展了评价指标,增加了网络带宽和磁盘容量等信息,根据待部署服务对多维资源的不同需求动态调整资源权重,并实时监控集群资源状态信息,自适应调整部署节点。实验结果表明,与原生策略相比,本文提出的部署优化策略有助于节点自身和集群整体资源的利用率更加均衡。(2)设计一种基于关键路径算法的微服务调度优化策略。针对Istio使用轮询算法带来的服务调度效率低问题,本文抽象调度问题,构造AOV拓扑图,结合微服务处理时间和代价将其转化为AOE模型,给出基于关键路径算法的求解方案,即以关键路径节点上服务实例完成时间为截止时间,决策出最低代价的服务实例。仿真结果表明,与Istio默认算法相比,本文提出的优化策略可以有效降低服务实例调度的时间和代价。(3)实现边缘侧的微服务调度优化方案。针对现有边缘存在多节点信息维护困难和缺乏细粒度微服务调度能力等问题,本文设计集中式边缘信息维护方案,并适配边缘轻量化服务网格,实现边缘集群的细粒度服务调度。最后,针对边缘资源与云端的差异,将本文所提调度策略进行了适应边缘的调整。结果表明,在边缘侧,本文给出的优化策略仍可有效地实现微服务调度的边边协同。综上,本文对面向算力网络的微服务部署和调度工作进行了优化,提出的部署优化策略能主动适应算力资源的变化,均衡资源的利用率;提出的基于关键路径算法的调度优化策略能显著降低调度时间和成本,且在边缘侧同样具有良好的性能表现。基于以上优化策略,有效地提升了算力网络中微服务的协同处理能力。