咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >基于GCN-LSTM的空气质量预测系统的设计与实现 收藏
基于GCN-LSTM的空气质量预测系统的设计与实现

基于GCN-LSTM的空气质量预测系统的设计与实现

作     者:郭昆鹏 

作者单位:中国科学院大学(中国科学院沈阳计算技术研究所) 

学位级别:硕士

导师姓名:祁柏林;张镝

授予年度:2021年

学科分类:07[理学] 08[工学] 070602[理学-大气物理学与大气环境] 0706[理学-大气科学] 0835[工学-软件工程] 081202[工学-计算机软件与理论] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主      题:空气质量预测 数据缺失处理 系统设计与实现 LSTM 网格化监测 

摘      要:近年来随着我国经济实力的快速发展,不可避免的带来了一定的环境污染问题,尤其是大气污染。这些环境污染问题已经给人民群众的生活质量和我国经济的快速发展造成了一定的影响。为了能够快速发现和应对空气污染问题,一些地区已经开始采用空气质量的网格化监测技术来加强对环境情况的监测与管控。所以,为了能够更好的利用网格化监测技术带来的大量数据,提前发现空气污染情况,搭建一套可以使用历史空气质量监测数据来预测未来一段时间空气质量的可视化系统,是可以为我国的环境治理工作带来一定帮助的。本文的主要工作如下:(1)收集整理沈阳市浑南区18个位于空气质量网格化监控中的微型监测站的6种空气中污染物(PM2.5,PM10,O3,CO,NO2,SO2)浓度数据并进行数据预处理。(2)在分析了空气中污染物浓度数据中缺失记录前后的数据特征的基础上提出了一种融合双向GRU的空气质量数据缺失填补算法(Bi-GRU),填补算法相比以往研究中的线性插值填补算法表现更优。(3)考虑到网格化监测中各个微型监测站之间的空间关联,提出了一种基于GCN-LSTM的空气质量预测算法,GCN-LSTM算法在空气质量预测方面相比于传统的LSTM算法表现更优。(4)以Bi-GRU算法和GCN-LSTM算法为基础,结合Spring Boot,Vue和Redis等技术,搭建并测试空气质量预测系统。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分