基于EWT和最优参数精细复合多尺度散布熵的风电机组齿轮箱故障诊断
作者单位:西安理工大学
学位级别:硕士
导师姓名:李辉;李华
授予年度:2021年
学科分类:080801[工学-电机与电器] 0808[工学-电气工程] 08[工学]
主 题:风电机组齿轮箱 特征提取 经验小波变换 精细复合多尺度散布熵 Relief-F 极限学习机
摘 要:风能是一种可再生的清洁能源,当代社会发展耗能大且能源短缺,风能的使用能够有效缓解传统能源短缺的问题,解决传统能源带来的环境污染问题。随着风电机组累计装机容量不断增加和风机使用环境恶劣导致风电机组齿轮箱故障频发。齿轮箱一旦发生故障,机组将面临长时间的停机和昂贵的维修费用,经济损失巨大。因此,准确、高效的对机组齿轮箱进行状态监测和故障诊断,对于保障机组安全稳定运行和提高发电效率具有重要意义。本文提出基于EWT(empirical wavelet transform)和最优参数精细复合多尺度散布熵的方法对风电机组齿轮箱故障诊断进行了研究。首先,在实际运行条件下,由于环境噪声干扰严重、振动信号传递路径复杂和机电耦合作用等原因导致风电机组齿轮箱振动信号具有非平稳、非线性并且信噪比低的特点,直接研究原始振动信号难以提取到有效的故障信息。本文引入经验小波变换处理风电机组齿轮箱振动信号,通过相关系数阈值筛选子模态分量进行信号重构,获取更高信噪比的故障振动信号。通过与EMD(empirical mode decomposition)分解方法对比,证明EWT可以在嘈杂的环境中有效地提取信号的主要成分,为后续特征提取环节打下基础。其次,针对特征提取和特征矩阵构建环节,传统时域、频域故障特征提取效果不佳、特征矩阵存在冗余的特点而造成故障诊断效果差的问题。引入新的时频特征精细复合多尺度散布熵(refined composite multiscale dispersive entropy,RCMDE)为特征向量,为提高精细复合多尺度散布熵算法的故障特征提取性能,获取区分度更大的精细复合多尺度散布熵,以其偏度值的平方函数作为适应度函数,通过网格搜索算法同步搜索计算两个关键参数m和C,提取齿轮箱重构故障振动信号的最优参数精细复合多尺度散布熵(optimal parameters refined composite multiscale dispersive entropy,OPRCMDE)构建特征矩阵。通过实验对比,证明EWT重构信号最优参数精细复合多尺度散布熵在提取各类故障特征时区分度更好,诊断结果更稳定准确。最后,针对特征向量冗余和一般分类算法参数多且参数设定影响分类准确率的问题。采用Relief-F算法计算特征向量的分类权重,选择权重大者构成最终的特征向量,剔除了冗余特征。最后再利用运算速度快,参数设置少的极限学习机(extreme learning machine,ELM)进行故障诊断。通过实验分析并与其它方法比较,证明本方法诊断正确率更高且更稳定,可以有效应用在风电机组齿轮箱故障诊断中,在实际工程应用中具有一定的价值,对于风电机组齿轮箱故障诊断的相关研究具有一定的参考性。