基于金纳米盘和纳米孔阵列结构的表面等离激元生物传感器研究
作者单位:南京大学
学位级别:硕士
导师姓名:徐挺
授予年度:2019年
学科分类:07[理学] 070205[理学-凝聚态物理] 08[工学] 080202[工学-机械电子工程] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0802[工学-机械工程] 0702[理学-物理学]
摘 要:表面等离激元(Surface Plasmon Polaritons,SPPs)是一种在介电常数相异的界面上出现的电磁波。由于其具有短波长、近场增强、表面局域的特性而被人们广泛应用于高灵敏度的传感器件设计。如集成化的纳米光学传感器、高分辨率显微镜、生物和医学中的高灵敏度集成化精细平台的设计等。随着微纳加工技术的发展,表面等离激元器件制备的手段也越来越多,根据SPR原理制成的元件被科研者广泛的关注与研究。目前,利用SPR原理形成的传感器件中很多都是以平面基底利用自顶而下的光刻技术设计加工得到的,其制作的成本高、耗时长、步骤复杂。所以在此基础上,我们提出了一种能够大面积、低成本的方法来制作厘米级别的等离子体纳米结构传感器。大面积的微纳图案结构使得角度敏感的探究成为了可能。该方法主要是以超薄氧化铝模板为基础,采用纳米转移的方法来制备了一个厘米级别、高灵敏度、低成本、高效率的传感平台。在非零入射角下,观察到该等离子体纳米盘结构的两种与角度有关的共振模式。并且系统的研究了这两种模式下的体积灵敏度和表面灵敏度与入射角度的关系。通过功能化等离子纳米结构,在不同入射角度下实时监测其在生物蛋白分子特异性结合过程中的共振峰偏移灵敏度。发现在入射角为10°时,该纳米盘结构生物传感器的特异性无标记生物检测极限可达1.8nM,这已经赶超了商用化的棱镜型表面等离激元传感器。将纳米结构集成于光纤上,从而使得光纤型的等离子体纳米结构传感器有良好的集成性、便携性和可远程操控测量性。然而将纳米结构集成在微小的光纤探针上的技术固有成本高、耗时长、产率低。在本文第二章节中我们利用纳米小球光刻技术研制出一种加工成本低廉、工艺流程短的纳米孔多模光纤探针传感器。多模光纤具有尖端面积大、数值孔径大的特点,不仅降低了加工的难度和入射光源的成本,还便于系统集成。我们对纳米孔光纤传感器的体积灵敏度和表面灵敏度进行了探究,其体积灵敏度可达432nm/RIU。此外,我们还探究演示了该小型化、便携性的光纤传感平台用来实时监测蛋白质特异性结合的实际应用。研究结果表明该种方法制作的传感器有望成为生物传感系统的新选择。