求解非线性约束优化问题的精确罚函数方法
作者单位:山东理工大学
学位级别:硕士
导师姓名:赵文玲
授予年度:2012年
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070105[理学-运筹学与控制论] 0701[理学-数学]
主 题:非线性约束优化问题 精确罚函数 光滑逼近 增广拉格朗日函数
摘 要:精确罚函数方法是求解非线性约束优化问题的一种重要方法。理论上,精确罚函数方法只需求解罚参数取某一有限值的罚问题,就可得到约束优化问题的解,从而避免了当罚参数的值趋于无穷大时产生病态的缺点。精确罚函数又分为不可微精确罚函数和连续可微精确罚函数。通常情况下,简单精确罚函数一定是不可微的,从而会在一些快速算法中阻止局部快速收敛,产生 Maratos效应。连续可微精确罚函数就克服了上述缺点,因此具有更好地性质。增广拉格朗日函数就是这样一种特殊的连续可微精确罚函数。 对于一般的非线性约束优化模型,本文将提出一种新的非线性Lagrange函数,讨论该函数在KKT点处的性质,并证明在适当条件下,基于该函数的对偶算法产生的迭代点列具有局部收敛性,然后给出与罚参数有关的解的误差估计。这为解决非线性约束优化问题又提供了一种新途径。 然后对非光滑罚函数进行二阶可微光滑逼近,并给出原优化问题、相应的非光滑罚函数、光滑罚函数最优值间的误差估计,然后设计基于该光滑罚函数的算法,并证明在适当条件下它具有全局收敛性,最后再利用数值实验来说明算法的有效性。 最后对于锥优化问题,运用增广拉格朗日函数这一特殊的精确罚函数,给出一种迭代算法,并证明这种算法具有一种较弱的全局收敛性,即提出一种ε-全局最优解,对于每一次迭代k,得到相应的εk-全局最优解,该序列都收敛到原问题的ε-全局最优解,从而证明算法具有ε-全局收敛性。