H-矩阵和块矩阵的若干性质
作者单位:湘潭大学
学位级别:硕士
导师姓名:朱砾
授予年度:2008年
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:H-矩阵 非奇异H-矩阵 块对角占优矩阵 广义H-矩阵 广义M-矩阵 对角占优 Khatri-Rao积 Hadmard积
摘 要:H-矩阵和块矩阵在矩阵理论和实际应用中具有重要的作用和意义。它在计算数学、矩阵论、数值代数、数学物理、控制论、电力系统理论、经济数学、统计学等众多领域中有着广泛的应用。国内外许多学者应用矩阵理论上的一些方法、不等式放缩技巧及迭代算法,获得了H-矩阵的许多判定方法,并对其性质与应用进行了研究。其中,广义H-矩阵的理论在许多实际问题的研究中有着更重要的作用。 本文进一步研究了H-矩阵的判别条件及性质,给出了非奇异H-矩阵的一些新判定,块对角占优矩阵的Khatri-Rao积的性质,广义H-矩阵、广义M-矩阵等矩阵的Hadmard积及其在块迭代法中的应用等。 第一章介绍了H-矩阵的应用背景、研究现状及理论与实际应用,尤其介绍了H-矩阵和块对角占优矩阵的应用背景及当前已经取得的一些成果。 第二章将下标集N划分N(?)N(?) N,结合有关矩阵对角占优块元素的性质,我们利用恒等行集N、N上的部分元素,选取不大于1的系数因子d、δ,并将该因子分别相乘于列标位于恒等行集N、N上的部分元素,进而构造出正对角阵D,利用不等式的放缩技巧,得到了非奇异H-矩阵一些新的判别方法,同时也给出了具有非零元素链矩阵相应的结论,有效地改进了一些已有结果,并由数值例子来说明其有效性。 第三章研究在矩阵范数下的块对角占优矩阵的Khatri-Rao积,在计算数学与统计学中有着重要的作用。得出了在某些矩阵范数下的几类块对角占优矩阵的Khatri-Rao积仍保持其原有的块对角占优性质,推广了近期的一些结论。 第四章广义H-矩阵的理论在许多实际问题的研究中有着非常重要的作用,如偏微分方程数值求解中出现的线性方程组的迭代法的收敛性问题。本章讨论了广义M-矩阵的Hadmard积还是广义M-矩阵,广义H-矩阵的Hadmard积还是广义H-矩阵,我们也改进了线性方程组的广义迭代方法及其应用。