Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles
Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles作者机构:Inter University Accelerator Centre Aruna Asaf Ali Marg Department of Physics and Materials Science and Engineering Jaypee Institute of Information Technology
出 版 物:《Progress in Natural Science:Materials International》 (自然科学进展·国际材料(英文))
年 卷 期:2015年第25卷第4期
页 面:300-309页
核心收录:
学科分类:081704[工学-应用化学] 07[理学] 070205[理学-凝聚态物理] 08[工学] 0817[工学-化学工程与技术] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学] 070301[理学-无机化学] 0702[理学-物理学]
基 金:Anshuman Sahai is grateful to Department of Science and Technology (DST) India for INSPIRE fellowship (IF#120042)
主 题:II–VI Semiconductors Infrared spectra Raman spectra Optical properties of low-dimensional Mesoscopic Nanoscale materials and structures
摘 要:Infl uence of nitrogen doping on structural and optical properties of ZnO nanoparticles has been studied. Undoped and N doped ZnO nanoparticles were synthesized via chemical precipitation approach. The prepared samples were characterized through X-ray diffraction(XRD),Transmission electron microscopy(TEM) equipped with Energy dispersive X-ray(EDAX) spectroscopy, UV–visible spectroscopy, Fourier transform infrared(FTIR) spectroscopy and micro-Raman spectroscopy(m RS). Wurtzite phase of undoped as well as 0.5–10% N doped ZnO nanoparticles was con fi rmed through characteristic XRD patterns. The particle size expansion due to N incorporation in ZnO was further revealed by TEM and EDAX analysis where 11 nm size undoped and 18–22 nm size 0.5–10% N doped ZnO(N:ZnO) nanoparticles without any impurity were ascertained. Slight blue-shift in band gap energy, as observed in our case, symbolized weak quantum con fi nement of the prepared nanoparticles. The alterations in vibrational modes of ZnO due to N incorporation, remarkably H substituting at O site and subsequently causing the passivation in N:ZnO nanoparticles, were detected through FTIR analysis. Finally, the effect of the nano-size of crystallite and gradual prominence of N into ZnO lattice due to increase of N doping concentration in prepared nanoparticles was meticulously expatiated though m RS analysis.