Stability of Doob-Meyer Decomposition Under Extended Convergence
Stability of Doob-Meyer Decomposition Under Extended Convergence作者机构:IRMAR Universite de RENNES 1 Campus de Beaulieu35042 RENNES CedexFrance & Institute of MathematicsShandong UniversityJinan 250100China
出 版 物:《Acta Mathematicae Applicatae Sinica》 (应用数学学报(英文版))
年 卷 期:2003年第19卷第2期
页 面:177-190页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Extended convergence weak convergence of filtrations special semimartingales Skorokhod topology
摘 要:In what follows, we consider the relation between Aldous s extended convergence and weak convergence of nitrations. We prove that, for a sequence (Xn) of J_t^n)-special semimartingales, with canonical decomposition Xn = Mn + An, if the extended convergence (***)→ (X,F.) holds with a quasi-left continuous (Ft)-special semimartingale X = M + A, then, under an additional assumption of uniform integrability, we get the convergence in probability under the Skorokhod topology: Mn→M and An→A.