咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Text Rank for Domain Specific ... 收藏

Text Rank for Domain Specific Using Field Association Words

Text Rank for Domain Specific Using Field Association Words

作     者:Omnia G. El Barbary El Sayed Atlam Omnia G. El Barbary;El Sayed Atlam

作者机构:Mathematics Department Faculty of Science Tanta University Tanta Egypt College of Computer Science and Engineering Taibah University Yanbu KSA 

出 版 物:《Journal of Computer and Communications》 (电脑和通信(英文))

年 卷 期:2020年第8卷第11期

页      面:69-79页

主  题:Text Rank Keyphrase Extraction Field Association Words Information Retrieval 

摘      要:Text Rank is a popular tool for obtaining words or phrases that are important for many Natural Language Processing (NLP) tasks. This paper presents a practical approach for Text Rank domain specific using Field Association (FA) words. We present the keyphrase separation technique not for a single document, although for a particular domain. The former builds a specific domain field. The second collects a list of ideal FA terms and compounds FA terms from the specific domain that are considered to be contender keyword phrases. Therefore, we combine two-word node weights and field tree relationships into a new approach to generate keyphrases from a particular domain. Studies using the changed approach to extract key phrases demonstrate that the latest techniques including FA terms are stronger than the others that use normal words and its precise words reach 90%.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分