Infinite Frobenius Groups Generated by Elements of Order 3
作者机构:School of ScienceJiangnan UniversityWuxiJiangsu 214122China Siberian State University of Telecommunications and Information Sciences 630102Kirova 86NovosibirskRussia Sobolev Institute of MathematicsSB RAS630090 Pr.Ak.Koptjug 4NovosibirskRussia Kabardino-Balkarian State Universityul.Chernyshevskogo 173 Nalchik360004Kabardino-BalkariyaRussia
出 版 物:《Algebra Colloquium》 (代数集刊(英文版))
年 卷 期:2020年第27卷第4期
页 面:741-748页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
主 题:Frobenius group splitting automorphism character table
摘 要:A semidirect product G=F⋋H of groups F and H is called a Frobenius group if the following two conditions are satisfied:(F1)H acts freely on F,that is,fh=f for f in F and h in H only if^(h)=1 or f=1.(F2)Every non-identity element h∈H of finite order n induces in F by conjugation in G a splitting automorphism,that is,ff^(h)⋯fh^(n−1)=1 for every f∈F;in other words,the order of f^(h−1)is equal to *** describe the normal structure of a Frobenius group with periodic subgroup H generated by elements of order 3.