Simple primitive recognition via hierarchical face clustering
Simple primitive recognition via hierarchical face clustering作者机构:Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing 100190China University of Chinese Academy of SciencesBeijing 100049China
出 版 物:《Computational Visual Media》 (计算可视媒体(英文版))
年 卷 期:2020年第6卷第4期
页 面:431-443页
核心收录:
学科分类:08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程]
基 金:the National Natural Science of Foundation for Outstanding Young Scholars(12022117) the National Natural Science Foundation of China(61872354) the Beijing Natural Science Foundation(Z190004) the Intelligent Science and Technology Advanced subject project of University of Chinese Academy of Sciences(115200S001)
主 题:quadric primitive extraction mesh hierarchical clustering
摘 要:We present a simple yet efficient algorithm for recognizing simple quadric primitives(plane,sphere,cylinder,cone)from triangular *** approach is an improved version of a previous hierarchical clustering algorithm,which performs pairwise clustering of triangle patches from bottom to *** key contributions of our approach include a strategy for priority and fidelity consideration of the detected primitives,and a scheme for boundary smoothness between adjacent *** results demonstrate that the proposed method produces qualitatively and quantitatively better results than representative state-of-the-art methods on a wide range of test data.