咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Existence and Nonlinear Stabil... 收藏

Existence and Nonlinear Stability of Stationary Solutions to the Viscous Two-Phase Flow Model in a Half Line

Existence and Nonlinear Stability of Stationary Solutions to the Viscous Two-Phase Flow Model in a Half Line

作     者:Hai-Liang Li Shuang Zhao Hai-Liang Li;Shuang Zhao

作者机构:School of Mathematical SciencesCapital Normal UniversityBeijing 100048P.R.China Academy for Multidisciplinary StudiesCapital Normal UniversityBeijing 100048P.R.China. 

出 版 物:《Communications in Mathematical Research》 (数学研究通讯(英文版))

年 卷 期:2020年第36卷第4期

页      面:423-459页

核心收录:

学科分类:080704[工学-流体机械及工程] 08[工学] 0807[工学-动力工程及工程热物理] 

基  金:the paper is supported by the National Natural Science Foundation of China(Nos.11871047,11671384,11931010) the key research project of Academy for Multidisciplinary Studies,Capital Normal University,and by the Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds(No.007/20530290068) 

主  题:Two-phase flow outflow problem stationary solution nonlinear stability. 

摘      要:The outflow problem for the viscous two-phase flow model in a half line is investigated in the present *** existence and uniqueness of the stationary solution is shown for both supersonic state and sonic state at spatial far field,and the nonlinear time stability of the stationary solution is also established in the weighted Sobolev space with either the exponential time decay rate for supersonic flow or the algebraic time decay rate for sonic flow.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分