General Admissibility for Linear Estimators of Multivariate Random Regression Coefficients and Parameters with Respect to a Restricted Parameter Set
General Admissibility for Linear Estimators of Multivariate Random Regression Coefficients and Parameters with Respect to a Restricted Parameter Set作者机构:School of Info-physics and Geometics EngineeringCentral South University School of InformetiesGuangdong University of Foreign Studies School of Mathematica Science and Computing TechnologyCentral South University
出 版 物:《Journal of Shanghai Jiaotong university(Science)》 (上海交通大学学报(英文版))
年 卷 期:2009年第14卷第6期
页 面:742-746页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 070104[理学-应用数学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:the National Natural Science Foundation of China (No. 40574003)
主 题:parametric matrix linear estimator general optimality general admissibility
摘 要:This paper considers the linear model effected by random disturbance,Y=XB+ε,where [~B_ε]~([^(AΘ)_0],VΣ),and ΘTATX TN XAΘΣ.It gives a definition for general admissible estimator of a linear function SΘ + GB of random regression coefficients and *** necessary and sufficient conditions for LY and LY + C to be general admissible estimators of SΘ + GB in the class of both homogenous and non-homogenous linear estimators are *** conclusion is not dependent of whether or not SΘ + GB is estimable.