On Sharpening of a Theorem of Ankeny and Rivlin
On Sharpening of a Theorem of Ankeny and Rivlin作者机构:Assistant Commissioner of Income TaxMinistry of FinanceGovernment of India Department of Mathematics&StatisticsAuburn UniversityAuburnAL 36849-5108USA
出 版 物:《Analysis in Theory and Applications》 (分析理论与应用(英文刊))
年 卷 期:2020年第36卷第2期
页 面:225-234页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Inequalities polynomials zeros
摘 要:Let p(z)=∑v^n=0avz^v anzn be a polynomial of degree n,M(p,R)=:max|z|=R≥0|p(z)|and M(p,1)=:||P||.Then according to a well-known result of Ankeny and Rivlin[1],we have for R≥1,M(p,R≤(R^n+1/2)||p||.This inequality has been sharpened by Govil[4],who proved that for R≥1,M(p,R)≤(R^N+1/2)||p||-n/2(||p||^2-4|an|^2/||p||){(R-1)||p||/||p||+2|an|-ln(1+(R-1)||p||/||p||+2|an|)}.In this paper,we sharpen the above inequality of Govil[4],which in turn sharpens the inequality of Ankeny and Rivlin[1].