咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Solution of Partial Derivative... 收藏

Solution of Partial Derivative Equations of Poisson and Klein-Gordon with Neumann Conditions as a Generalized Problem of Two-Dimensional Moments

Solution of Partial Derivative Equations of Poisson and Klein-Gordon with Neumann Conditions as a Generalized Problem of Two-Dimensional Moments

作     者:Maria B. Pintarelli Maria B. Pintarelli

作者机构:Department of Basic Sciences Faculty of Engineering National University of La Plata La Plata Argentina Mathematics Department Faculty of Exact Sciences National University of La Plata La Plata Argentina 

出 版 物:《Journal of Applied Mathematics and Physics》 (应用数学与应用物理(英文))

年 卷 期:2020年第8卷第8期

页      面:1606-1614页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Equation in Poisson Partial Derivatives Klein-Gordon Equation Integral Equations Generalized Moment Problem 

摘      要:It will be shown that finding solutions from the Poisson and Klein-Gordon equations under Neumann conditions are equivalent to solving an integral equation, which can be treated as a generalized two-dimensional moment problem over a domain that is considered rectangular. The method consists to solve the integral equation numerically using the two-dimensional inverse moments problem techniques. We illustrate the different cases with examples.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分