Study on the Tectonic Setting for the Ophiolites in Xigaze, Tibet
Study on the Tectonic Setting for the Ophiolites in Xigaze, Tibet作者机构:Institute of Geology Chinese Academy of Geological Sciences Institute of Earth Sciences China University of Geosciences
出 版 物:《Acta Geologica Sinica(English Edition)》 (地质学报(英文版))
年 卷 期:2013年第87卷第2期
页 面:395-425页
核心收录:
学科分类:0709[理学-地质学] 0819[工学-矿业工程] 070901[理学-矿物学、岩石学、矿床学] 07[理学] 0818[工学-地质资源与地质工程] 0708[理学-地球物理学] 0816[工学-测绘科学与技术]
基 金:jointly supported by the Geological Survey Project of Chinese (Grant No.1212010911070) National Science Foundation of China (Grant No.41072167) Institute of Geology, Chinese Academy of Geological Sciences (Grant No. J1120)
主 题:MORB boninite series rocks forearc extention subduction initiation Xigaze ophiolite
摘 要:The Xigaze ophiolite is located in the middle section of the Yarlung Zangbo River ophiolite belt and includes a well-preserved sequence section of seven ophiolite blocks. The relatively complete ophiolitic sequence sections are represented by Jiding, Dejixiang, Baigang, and Dazhuqu ophiolites and consist of three-four units. The complete ophiolite sequence in order from the bottom to top consists of mantle peridotite, cumulates, sheeted sill dike swarms, and basic lavas±radiolarian chert. These cumulates are absent in the remaining blocks of Dejixiang and Luqu. The age of radiolaria in the radiolarian chert is Late Jurassic-Cretaceous. The basalt and ultramafic rock of the ophiolite also are overlaid by Tertiary Liuqu conglomerate, which contains numerous pebble components of ophiolite, indicating that the Tethys Ocean began to close at the end of Cretaceous Period. The isotopic data of gabbro, diabase, and albite granite in the Xigaze ophiolite are approximately 126-139 Ma, which indicates that the ophiolite formed in the Early Cretaceous. The K-Ar age of amphibole in garnet amphibolite in the ophiolite melange is 81 Ma, indicating that tectonic ophiolite emplacement occurred at the end of Late Cretaceous. Research in petrology, petrological chemistry, mineralogy, and geochemistry of volcanic rocks and dikes of the Xigaze ophiolite indicate the following characteristics: (1) They are mainly composed of basalt, basaltic andesite, dolerite, and diabase and are characterized by high TiO2 (0.7-1.47%), low MgO (mostly less than 8%), and low SiO2 (mostly less than 53%). (2) The volcanic rocks and dikes of the Xigaze ophiolite show light rare earth element (LREE)-depleted rare earth element (REE) patterns. (3) The spider diagrams of the volcanic rocks and dikes of the Xigaze ophiolite exhibit LILE depletion relative to high-field-strength element (HFSE) patterns with left oblique features. (4) No protogenetic olivine and clinoenstatite was detected. (5) Some dikes show lo