咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Global axisymmetric classical ... 收藏

Global axisymmetric classical solutions of full compressible magnetohydrodynamic equations with vacuum free boundary and large initial data

Global axisymmetric classical solutions of full compressible magnetohydrodynamic equations with vacuum free boundary and large initial data

作     者:Kunquan Li Zilai Li Yaobin Ou Kunquan Li;Zilai Li;Yaobin Ou

作者机构:School of MathematicsRenmin University of ChinaBeijing 100872China School of Mathematics and Information ScienceHenan Polytechnic UniversityJiaozuo 454QQ0China 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2022年第65卷第3期

页      面:471-500页

核心收录:

学科分类:07[理学] 080103[工学-流体力学] 08[工学] 070104[理学-应用数学] 0701[理学-数学] 0801[工学-力学(可授工学、理学学位)] 

基  金:supported by National Natural Science Foundation of China(Grant Nos.11971477,11761141008,11601128 and 11671319) the Fundamental Research Funds for the Central Universities the Research Funds of Renmin University of China(Grant No.18XNLG30) Beijing Natural Science Foundation(Grant No.1182007) Doctor Fund of Henan Polytechnic University(Grant No.B2016-57) completed when Yaobin Ou visited Brown University under the support of the China Scholarship Council(Grant No.201806365010) 

主  题:compressible magnetohydrodynamic equations vacuum free boundary global axisymmetric classical solutions large initial data 

摘      要:In this paper,the global existence of the classical solution to the vacuum free boundary problem of full compressible magnetohydrodynamic equations with large initial data and axial symmetry is *** solutions to the system(1.6)–(1.8) are in the class of radius-dependent solutions,i.e.,independent of the axial variable and the angular *** particular,the expanding rate of the moving boundary is *** main difficulty of this problem lies in the strong coupling of the magnetic field,velocity,temperature and the degenerate density near the free *** overcome the obstacle by establishing the lower bound of the temperature by using different Lagrangian coordinates,and deriving the uniform-in-time upper and lower bounds of the Lagrangian deformation variable r;by weighted estimates,and also the uniform-in-time weighted estimates of the higher-order derivatives of solutions by delicate analysis.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分