A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Diffusion Equations
作者机构:Department of Mathematical SciencesIsfahan University of TechnologyIsfahan 84156-83111Iran EPFL-SB-MATHICES-MCSSÉcole Polytechnique Fédéral de Lausanne1015 LausanneSwitzerland
出 版 物:《Communications on Applied Mathematics and Computation》 (应用数学与计算数学学报(英文))
年 卷 期:2020年第2卷第4期
页 面:689-709页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
主 题:Two-dimensional(2D)time fractional difusion equation Local discontinuous Galerkin method(LDG) Numerical stability Convergence analysis
摘 要:For two-dimensional(2D)time fractional diffusion equations,we construct a numerical method based on a local discontinuous Galerkin(LDG)method in space and a finite differ-ence scheme in *** investigate the numerical stability and convergence of the method for both rectangular and triangular meshes and show that the method is unconditionally *** results indicate the effectiveness and accuracy of the method and con-firm the analysis.