咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >NONLINEAR STABILITY OF RAREFAC... 收藏

NONLINEAR STABILITY OF RAREFACTION WAVES FOR A COMPRESSIBLE MICROPOLAR FLUID MODEL WITH ZERO HEAT CONDUCTIVITY

NONLINEAR STABILITY OF RAREFACTION WAVES FOR A COMPRESSIBLE MICROPOLAR FLUID MODEL WITH ZERO HEAT CONDUCTIVITY

作     者:Jing JIN Noor REHMAN Qin JIANG 金晶;Noor REHMAN;江芹

作者机构:School of Mathematics and StatisticsHuanggang Nonnal UniversityHuanggang 43800()China School of Mathematics and StatisticsCentral China Normal UniversityWuhan 430079China 

出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))

年 卷 期:2020年第40卷第5期

页      面:1352-1390页

核心收录:

学科分类:080701[工学-工程热物理] 07[理学] 08[工学] 0807[工学-动力工程及工程热物理] 070104[理学-应用数学] 0701[理学-数学] 

基  金:supported by Hubei Natural Science(2019CFB834).The second author was supported by the NSFC(11971193) 

主  题:micropolar fluids rarefaction wave zero-heat conductivity 

摘      要:In 2018,Duan[1]studied the case of zero heat conductivity for a one-dimensional compressible micropolar fluid *** to the absence of heat conductivity,it is quite difficult to close the energy *** considered the far-field states of the initial data to be constants;that is,lim x→±∞(v0,u0,w0,θ0)(x)=(1,0,0,1).He proved that the solution tends asymptotically to those *** this article,under the same hypothesis that the heat conductivity is zero,we consider the far-field states of the initial data to be different constants-that is,lim x→±∞(v0,u0,w0,θ0)(x)=(v±,u±,o,θ±)-and we prove that if both the initial perturbation and the strength of the rarefaction waves are assumed to be suitably small,the Cauchy problem admits a unique global solution that tends time-asymptotically toward the combination of two rarefaction waves from different families.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分