ON THE CONVERGENCE OF NONCONFORMING FINITEELEMENT METHODS FOR THE 2ND ORDER ELLIPTICPROBLEM WITH THE LOWEST REGULARITY
ON THE CONVERGENCE OF NONCONFORMING FINITE ELEMENT METHODS FOR THE 2ND ORDER ELLIPTIC PROBLEM WITH THE LOWEST REGULARITY作者机构:中科院计算数学与科学工程计算所 科学与工程计算国家重点实验室 北京 100080
出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))
年 卷 期:1999年第17卷第6期
页 面:609-614页
核心收录:
学科分类:07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070102[理学-计算数学] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金
主 题:nonconforming finite element methods lowest regularity
摘 要:The convergences ununiformly and uniformly are established for the nonconforming finite element methods for the second order elliptic problem with the lowest regularity, i.e., in the case that the solution u is an element of H-0(1)(Omega) only.