咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >DISCONTINUOUS GALERKIN METHODS... 收藏

DISCONTINUOUS GALERKIN METHODS AND THEIR ADAPTIVITY FOR THE TEMPERED FRACTION AL(CONVECTION)DIFFUSION EQUATIONS

作     者:Xudong Wang Weihua Deng Xudong Wang;Weihua Deng

作者机构:School of Mathematics and StatisticsGansu Key Laboratory of Applied Mathematics and Complex SystemsLanzhou UniversityLanzhou 730000China 

出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))

年 卷 期:2020年第38卷第6期

页      面:839-867页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:the National Natural Science Foundation of China under grant no.11671182 the Fundamental Research Funds for the Central Universities under grants no.lzujbky-2018-ot03 and no.lzujbky 2019-it17 

主  题:Adaptive DG methods Tempered fractional equations Posteriori error estimate 

摘      要:This paper focuses on the adaptive discontinuous Galerkin(DG)methods for the tempered fractional(convection)diffusion *** DG schemes with interior penalty for the diffusion term and numerical flux for the convection term are used to solve the equations,and the detailed stability and convergence analyses are *** on the derived posteriori error estimates,the local error indicator is *** theoretical results and the effectiveness of the adaptive DG methods are,respectively,verified and displayed by the extensive numerical *** strategy of designing adaptive schemes presented in this paper works for the general PDEs with fractional operators.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分