DISCONTINUOUS GALERKIN METHODS AND THEIR ADAPTIVITY FOR THE TEMPERED FRACTION AL(CONVECTION)DIFFUSION EQUATIONS
作者机构:School of Mathematics and StatisticsGansu Key Laboratory of Applied Mathematics and Complex SystemsLanzhou UniversityLanzhou 730000China
出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))
年 卷 期:2020年第38卷第6期
页 面:839-867页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:the National Natural Science Foundation of China under grant no.11671182 the Fundamental Research Funds for the Central Universities under grants no.lzujbky-2018-ot03 and no.lzujbky 2019-it17
主 题:Adaptive DG methods Tempered fractional equations Posteriori error estimate
摘 要:This paper focuses on the adaptive discontinuous Galerkin(DG)methods for the tempered fractional(convection)diffusion *** DG schemes with interior penalty for the diffusion term and numerical flux for the convection term are used to solve the equations,and the detailed stability and convergence analyses are *** on the derived posteriori error estimates,the local error indicator is *** theoretical results and the effectiveness of the adaptive DG methods are,respectively,verified and displayed by the extensive numerical *** strategy of designing adaptive schemes presented in this paper works for the general PDEs with fractional operators.