BSDEs with Jumps and Path-Dependent Parabolic Integro-differential Equations
BSDEs with Jumps and Path-Dependent Parabolic Integro-differential Equations作者机构:Institute for Advanced Research and School of Mathematics Shandong University
出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))
年 卷 期:2015年第36卷第4期
页 面:625-644页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070102[理学-计算数学] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:supported by the National Natural Science Foundation of China(Nos.10921101,11471190) the Shandong Provincial Natural Science Foundation of China(No.ZR2014AM002) the Programme of Introducing Talents of Discipline to Universities of China(No.B12023)
主 题:Backward stochastic differential equations Jump=diffusion processes Itointegral and Ito calculus Path-dependent parabolic integro=differentialequations
摘 要:This paper deals with backward stochastic differential equations with jumps,whose data(the terminal condition and coefficient) are given functions of jump-diffusion process paths. The author introduces a type of nonlinear path-dependent parabolic integrodifferential equations, and then obtains a new type of nonlinear Feynman-Kac formula related to such BSDEs with jumps under some regularity conditions.