Bifurcations of Limit Cycles from a Quintic Hamiltonian System with a Heteroclinic Cycle
Bifurcations of Limit Cycles from a Quintic Hamiltonian System with a Heteroclinic Cycle作者机构:School of Mathematical SciencesBeijing Normal UniversityLaboratory of Mathematics and Complex SystemsMinistry of Education
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2014年第30卷第3期
页 面:411-422页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by National Natural Science Foundation of China(Grant No.11271046)
主 题:Hyper-elliptic Hamiltonian system Abelian integral period annulus Picard-Fuchs equa-tion
摘 要:In this paper,we consider Li′enard systems of the form dx/dt=y,dy/dt=x+bx3-x5+ε(α+βx2+γx4)y,where b∈R,0〈|ε|〈〈1,(α,β,γ)∈D∈R3 and D is *** prove that for |b|〉〉1(b〈0) the least upper bound of the number of isolated zeros of the related Abelian integrals I(h)=∮Γh(α+βx2+γx4)ydx is 2(counting the multiplicity) and this upper bound is a sharp one.