Innovus机器学习在高性能CPU设计中的应用
Innovus machine learning application in performance CPU design作者机构:天津飞腾信息技术有限公司湖南长沙410000 上海楷登电子科技有限公司上海201204
出 版 物:《电子技术应用》 (Application of Electronic Technique)
年 卷 期:2020年第46卷第8期
页 面:54-59,63页
学科分类:080903[工学-微电子学与固体电子学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学]
摘 要:高性能芯片设计在7 nm及更高级的工艺节点上,设计规模更大、频率更高、设计数据和可变性更复杂,物理设计难度增大。机器学习在多领域均获得成功应用,复杂的芯片设计是应用机器学习的一个很好的领域。Cadence将机器学习算法内置到Innovus工具中,通过对芯片设计数据进行学习建模,建立机器学习模型,从而提升芯片性能表现。建立了一个应用机器学习优化延时的物理流程来提升芯片设计性能。详细讨论分析了分别对单元延时、线延时、单元和线延时进行优化对设计的影响,进而找到一个较好的延时优化方案。最后利用另一款设计难度更大,性能要求更高的模块从时序、功耗、线长等方面较为全面地分析验证设计方案的合理性。