咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Regional TEC modelling over Af... 收藏

Regional TEC modelling over Africa using deep structured supervised neural network

在深使用的非洲上的地区性的侦探建模组织了监督神经网络

作     者:Mefe Moses Joseph Danasabe Dodo Lazarus Mustapha Ojigi Kola Lawal Mefe Moses;Joseph Danasabe Dodo;Lazarus Mustapha Ojigi;Kola Lawal

作者机构:Department of GeomaticsAhmadu Bello UniversityZariaKadunaNigeria Centre for Geodesy and GeodynamicsNASRDAToroBauchi StateNigeria 

出 版 物:《Geodesy and Geodynamics》 (大地测量与地球动力学(英文版))

年 卷 期:2020年第11卷第5期

页      面:367-375页

学科分类:081802[工学-地球探测与信息技术] 08[工学] 081105[工学-导航、制导与控制] 0818[工学-地质资源与地质工程] 0804[工学-仪器科学与技术] 0811[工学-控制科学与工程] 

基  金:Regional Centre for Mapping of Resources for Development University Corporation for Atmospheric Research, UCAR National Space Organization, NSPO 

主  题:latitude Regional equatorial 

摘      要:A deep structured supervised neural network(NN) model has been developed for modelling of ionospheric vertical total electron content(VTEC) using observations from over 100 Global Navigation Satellite System continuously operating reference stations(GNSS CORS) across Africa. The study covers all available data during low, moderate and declining phases of solar cycle 24, from 2009 to 2017. Optimal network parameters combination for the regional model includes a combination of spatio-temporal parameters(latitude, longitude, year, day of the year, hour), geomagnetic and solar parameters(F10.7, AE,Dst indices), hidden layer of 20 neurons and a feedforward network with Levenberge Marquardt backpropagation algorithm. The validation and the test curves do not indicate overfitting and the performance curves of the training, validation and test data show a very similar trend. Thus, the performance of the optimal network with learning data is in sync with the data not assimilated in the learning *** African Regional Ionospheric Tec Model(ARITM) developed in this study reproduces the known spatiotemporal features of the equatorial and low-latitudes ionosphere quite well. The ARITM performs well to a considerably high degree of precision within the Africa region by comparison with the global ionospheric maps(GIMs) and the Formosa Satellite-3 Constellation Observing System for Meteorology,Ionosphere & Climate(FORMOSAT-3/COSMIC) observations. The results suggest that the developed model can efficiently be adopted as a substitute for single station ionospheric model for any single GNSS station within Africa, avoiding the need for developing independent multiple single station ionospheric models for each of the existing and future GNSS stations within the African region.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分