A Transmission Line Fault Classification Approach by Support Vector Machines
A Transmission Line Fault Classification Approach by Support Vector Machines作者机构:Electrical Power and Machines Department Faculty of Engineering Ain Shams University Cairo Egypt
出 版 物:《Journal of Energy and Power Engineering》 (能源与动力工程(美国大卫英文))
年 卷 期:2011年第5卷第3期
页 面:268-274页
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 0808[工学-电气工程] 080803[工学-高电压与绝缘技术] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Transmission line protection fault detection fault classification support vector machine.
摘 要:This paper presents an approach for shunt faults detection and classification in transmission line using Support Vector Machine (SVM). The paper compares between using three line post-fault current samples for one-half cycle and one-fourth cycle from the inception of the fault as inputs for SVM. Two SVMs are used, first SVMabc is used for faulty phase detection and second SVMg is used for ground detection. SVMs with polynomial kernel with different degrees are used to obtain the best classification score. The classification test results show that the proposed method is accurate and reliable.