氟化镁高压萤石结构稳定性及热物性的数值模拟
Numerical prediction of structural stability and thermodynamic properties for MgF2 with fluoritetype structure under high pressure作者机构:兰州交通大学数理学院兰州730070 兰州城市学院物理系兰州730070
出 版 物:《物理学报》 (Acta Physica Sinica)
年 卷 期:2020年第69卷第15期
页 面:202-213页
核心收录:
学科分类:0709[理学-地质学] 070901[理学-矿物学、岩石学、矿床学] 07[理学]
基 金:国家自然科学基金(批准号:51562021,111464027) 甘肃省重点人才项目(批准号:2020RCXM100) 兰州交通大学优秀科研团队(批准号:201803) 兰州交通大学“百名青年优秀人才培养计划”资助的课题
摘 要:氟化镁(MgF2)是工业用途广泛的重要碱土金属氟化物,也是矿物质氟镁石的主要成分,相比于电子结构和光学特性的研究,人们从地球物理学的角度给予MgF2高压热物性的研究明显不够,而组成地球下地幔矿物的高压熔化、热膨胀等热物性预测对理解地球的结构、动力学、演化及起源至关重要.本文利用基于密度泛函理论的第一性原理方法,通过热力学、动力学、力学稳定性计算表明萤石结构为MgF2高压结构,根据等焓原理,分别结合广义梯度近似和局域密度近似确定出了零温下MgF2晶体从稳定金红石结构到高压萤石结构的相转变压力为19.26 GPa和18.15 GPa,且萤石结构至少稳定到135 GPa(相当于下地幔压力);利用基于有效势参数模型的经典分子动力学方法,通过模拟特定压力下MgF2体系的摩尔体积、总能随温度的变化确认了MgF2萤石结构在300—6000 K温度范围内的高温稳定性.在此基础上,考虑选用能够提高密堆固体平衡特性的交换相关泛函形式的广义梯度近似方法且结合准谐德拜模型,以及利用根据从头算Hartree-Fock方法获得的数据拟合得到的可靠经验势参数结合经典分子动力学方法,共同预测了萤石结构的MgF2在300—1500 K和0—135 GPa的温度和压力范围内的体积热膨胀系数、等温体模量、热弹性参数等重要热力学参量.研究表明:MgF2萤石结构基于体积热膨胀系数和等温体模量得到的热弹性参数并非物态方程研究中通常假定的常数,但在高温高压条件下,其值接近于常数.