Learning Causal Effect Using Machine Learning with Application to China's Typhoon
Learning Causal Effect Using Machine Learning with Application to China’s Typhoon作者机构:School of StatisticsBeijing Normal UniversityBeijing 100875China School of mathematics and StatisticsHubei University of Science and TechnologyHubei 437000China
出 版 物:《Acta Mathematicae Applicatae Sinica》 (应用数学学报(英文版))
年 卷 期:2020年第36卷第3期
页 面:702-713页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 081104[工学-模式识别与智能系统] 070601[理学-气象学] 08[工学] 0706[理学-大气科学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by the National Key Research and Development Program of China Grant 2017YFA0604903 National Natural Science Foundation of China Grant(Nos.11671338,11971064)
主 题:causal effect matching machine learning
摘 要:Matching is a routinely used technique to balance covariates and thereby alleviate confounding bias in causal inference with observational *** of the matching literatures involve the estimating of propensity score with parametric model,which heavily depends on the model *** this paper,we employ machine learning and matching techniques to learn the average causal *** comparing a variety of machine learning methods in terms of propensity score under extensive scenarios,we find that the ensemble methods,especially generalized random forests,perform favorably with *** apply all the methods to the data of tropical storms that occurred on the mainland of China since 1949.