咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Learning Causal Effect Using M... 收藏

Learning Causal Effect Using Machine Learning with Application to China's Typhoon

Learning Causal Effect Using Machine Learning with Application to China’s Typhoon

作     者:Peng WU Qi-rui HU Xing-wei TONG Min WU Peng WU;Qi-rui HU;Xing-wei TONG;Min WU

作者机构:School of StatisticsBeijing Normal UniversityBeijing 100875China School of mathematics and StatisticsHubei University of Science and TechnologyHubei 437000China 

出 版 物:《Acta Mathematicae Applicatae Sinica》 (应用数学学报(英文版))

年 卷 期:2020年第36卷第3期

页      面:702-713页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 081104[工学-模式识别与智能系统] 08[工学] 070601[理学-气象学] 0706[理学-大气科学] 0835[工学-软件工程] 0701[理学-数学] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported by the National Key Research and Development Program of China Grant 2017YFA0604903 National Natural Science Foundation of China Grant(Nos.11671338,11971064) 

主  题:causal effect matching machine learning 

摘      要:Matching is a routinely used technique to balance covariates and thereby alleviate confounding bias in causal inference with observational *** of the matching literatures involve the estimating of propensity score with parametric model,which heavily depends on the model *** this paper,we employ machine learning and matching techniques to learn the average causal *** comparing a variety of machine learning methods in terms of propensity score under extensive scenarios,we find that the ensemble methods,especially generalized random forests,perform favorably with *** apply all the methods to the data of tropical storms that occurred on the mainland of China since 1949.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分