Measurement of the peripheral aberrations of human eyes:A comprehensive review
Measurement of the peripheral aberrations of human eyes:A comprehensive review作者机构:Centre of Micro/Nano Manufacturing Technology(MNMT-Dublin)University College DublinDublin 4Ireland State Key Laboratory of Precision Measuring Technology and InstrumentsCentre of Micro/Nano Manufacturing Technology(MNMT)Tianjin UniversityTianjin 300072China
出 版 物:《Nanotechnology and Precision Engineering》 (纳米技术与精密工程(英文))
年 卷 期:2020年第3卷第2期
页 面:53-68页
核心收录:
学科分类:08[工学] 1010[医学-医学技术(可授医学、理学学位)] 080203[工学-机械设计及理论] 0802[工学-机械工程] 10[医学]
基 金:the financial support from Science Foundation Ireland (SFI) (No. 15/RP/B3208) ‘111’ project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (No. B07014)
主 题:Peripheral aberrations Myopia control Open field autorefractometer Hartman-shack wavefront sensor-based techniques
摘 要:It has been nearly 50 years since the first glimpse of the relationship between myopia and peripheral refractive errors. According to experiments on both animals and humans, the eyes with hyperopic peripheral vision appear to be at higher risk of developing myopia than those with myopic peripheral refractive errors. Despite the first measurement of peripheral refraction being achieved by a modified manual optometer, the concept of emmetropization triggered a rapidly increasing number of studies on peripheral aberrations. Not only the horizontal off-axis aberrations but also the meridional aberrations at different angles are measured by researchers during the development of peripheral aberrations measuring techniques. According to the differences among the working principles, a variety of techniques have been adopted for performing such measurements. The methods developed to realize the high-performance measurement involve the subject cooperating actively by rotating the head or eyes, the rotation of the whole optical path, and the combination of measurements of many light paths. This paper provides a review of the peripheral aberrations measuring techniques and their current status. This article also highlights the development trend of the measuring techniques of peripheral aberrations and practical applications of peripheral aberration measurements, such as the control of the accommodation, the measuring time, and the dynamic range problem of the wavefront sensor. Although wavefront sensing peripheral measurement is widely recognized for its capability to reveal both lower-order aberrations and higher-order aberrations, the efficiency of an autorefractometer is incomparable. The current study reveals that the most widely used peripheral aberration measurement methods are the use of an open field autorefractometer and Hartman-shack wavefront sensor-based techniques.