A converse of Hormander's L^(2)-estimate and new positivity notions for vector bundles
A converse of H?rmander’s L~2-estimate and new positivity notions for vector bundles作者机构:Mathematical InstituteTohoku UniversitySendai 980-8578Japan Graduate School of Mathematical SciencesThe University of TokyoTokyo 153-8914Japan
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2021年第64卷第8期
页 面:1745-1756页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by the Program for Leading Graduate Schools the Ministry of Education Culture Sports Science and Technology Japan and Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research(Grant No.18J22119)
主 题:L^(2)-estimate singular Hermitian metrics Ohsawa-Takegoshi L^(2)-extension theorems
摘 要:We study conditions of Hormander s L^(2)-estimate and the Ohsawa-Takegoshi extension *** a twisted version of the Hormander-type condition,we show a converse of Hormander s L^(2)-estimate under some regularity assumptions on an n-dimensional *** result is a partial generalization of the one-dimensional result obtained by Berndtsson(1998).We also define new positivity notions for vector bundles with singular Hermitian metrics by using these *** investigate these positivity notions and compare them with classical positivity notions.