咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >各种格点上的端点附壁随机行走 收藏

各种格点上的端点附壁随机行走

作     者:吴大诚 廖琦 

作者机构:四川联合大学轻工纺织学院成都610065 

出 版 物:《科学通报》 (Chinese Science Bulletin)

年 卷 期:1997年第42卷第1期

页      面:102-105页

核心收录:

学科分类:081704[工学-应用化学] 07[理学] 08[工学] 0817[工学-化学工程与技术] 070305[理学-高分子化学与物理] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学] 

基  金:国家自然科学基金(批准号:29574171) 

主  题:随机行走 格点模型 吸收壁 尾形链 高聚物 

摘      要:自1905年Pearson正式提出随机行走(RW)的概念以来,在数学上已经进行了广泛深入的研究,并扩充至物理、化学、生物、工程、商业和社会科学等许多领域.由于实际应用的需要,产生了对受限RW问题的研究.其中,端点起始于某一不可穿透壁,而受限于此壁的RW,可以作为最简单的受限RW问题之一.例如,高分子吸附时形成的尾形链,蛋白质受体上环链的形成,都可直接与这类受限随机行走模型相联系.然而,这一受限RW的基本问题并没有得到系统而简明的解答.作者等曾对端基附壁RW进行了研究,但仅限于最简单形状的格点,因此有必要加以扩充,推广至各种不同的格点.本工作表明,格点的几何特征容易与扩散方程中的扩散系数相联系,从而可以导出允许路径的密度函数及行走均方末端距等基本数学物理量.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分