基于改进型卷积网络的汽车高度调节器缺陷检测方法
Defect detection method for automobile height regulator based on improved convolution network作者机构:福州大学电气工程与自动化学院福州350108 福州大学新能源发电与电能变换福建省高校重点实验室福州350108 慈溪亚路车辆配件有限公司宁波315000
出 版 物:《仪器仪表学报》 (Chinese Journal of Scientific Instrument)
年 卷 期:2020年第41卷第2期
页 面:157-165页
核心收录:
学科分类:082304[工学-载运工具运用工程] 08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程] 0823[工学-交通运输工程]
主 题:深度学习 改进型卷积网络 残差网络 汽车高度调节器 缺陷检测
摘 要:针对汽车高度调节器生产中人工缺陷检测耗时耗力和传统诊断方法适用性差的问题,运用深度学习提出了一种基于改进型卷积网络的智能检测方法。该方法利用卷积网络提取特征,并且在网络中加入残差网络结构和可分离卷积,在深层网络提高精度的同时减少了参数计算量。改进的结构主要运用卷积层、池化层、批标准化层、softmax层,并引入残差网络结构和可分离卷积。实验结果表明,基于改进型卷积网络的汽车高度调节器缺陷检测方法有着良好的识别精度,在汽车高度调节器多类缺陷的检测实验中,准确率均在99%以上,优于经典卷积网络VGG16。