咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >The Open-Point and Compact-Ope... 收藏

The Open-Point and Compact-Open Topology on C(X)

The Open-Point and Compact-Open Topology on C(X)

作     者:Liangxue PENG Yuan SUN Liangxue PENG;Yuan SUN

作者机构:College of Applied Science Beijing University of Technology 

出 版 物:《Journal of Mathematical Research with Applications》 (数学研究及应用(英文))

年 卷 期:2020年第40卷第3期

页      面:305-312页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Supported by the National Natural Science Foundation of China (Grant No. 11771029) the Natural Science Foundation of Beijing City (Grant No. 1202003) 

主  题:C_p(X) C_k(X) Ckh(X) G_δ-dense 

摘      要:In this note we define a new topology on C(X),the set of all real-valued continuous functions on a Tychonoff space *** new topology on C(X) is the topology having subbase open sets of both kinds:[f,C,ε[={g E C(X):|f(x)-g(x)| 0,while U is an open subset of X and r∈*** space C(X) equipped with the new topology Tkhwhich is stated above is denoted by Ckh(X).Denote X0={x∈X:x is an isolated point of X} and Xc={x∈X:x has a compact neighborhood in X}.We show that if X is a Tychonoff space such that X0=Xc,then the following statements are equivalent:(1) X0is Gδ-dense in X;(2) Ckh(X) is regular;(3) Ckh(X) is Tychonoff;(4) Ckh(X) is a topological *** also show that if X is a Tychonoff space such that X0=Xcand Ckh(X) is regular space with countable pseudocharacter,then X is σ-*** X is a metrizable hemicompact countable space,then Ckh(X) is first countable.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分