The influence of nano-particle tracers on the slip length measurements by microPTV
The influence of nano-particle tracers on the slip length measurements by microPTV作者机构:State Key Laboratory of Nonlinear Mechanics Institute of MechanicsCAS
出 版 物:《Acta Mechanica Sinica》 (力学学报(英文版))
年 卷 期:2013年第29卷第3期
页 面:411-419页
核心收录:
学科分类:080704[工学-流体机械及工程] 080103[工学-流体力学] 08[工学] 0807[工学-动力工程及工程热物理] 0801[工学-力学(可授工学、理学学位)]
基 金:supported by the National Natural Science Foundation of China (10872203) the National Basic Research Program(2007AC744701) the CAS Research and Development Program of China (KSCX2-YW-H18)
主 题:MicroPIV/PTV · Slip length · Nano particle tracer · Particle concentration distribution · Boltzmann distribution
摘 要:Direct measurement of slip length is based on the measured fluid velocity near solid boundary. However, previous micro particle image velocimetry/particle tracking velocimetry (microPIV/PTV) measurements have reported surprisingly large measured near-wall velocities of pressure-driven flow in apparent contradiction with the no-slip hy-pothesis and experimental results from other techniques. To better interpret the measured results of the microPIV/PTV, we performed velocity profile measurements near a hy-drophilic wall (z = 0.25-1.5 μm) with two sizes of tracer particles (φ 50 nm and φ200 nm). The experimental results indicate that, at less than 1 μm from the wall, the deviations between the measured velocities and no-slip theoretical values obviously decrease from 93% of φ200 nm particles to 48% of φ50 nm particles. The Boltzmann-like exponential measured particle concentrations near wall were found. Based on the non linear Boltzmann distribution of particle concentration and the effective focus plane thickness, we illustrated the reason of the apparent velocity increase near wall and proposed a method to correct the measured velocity profile. By this method, the deviations between the corrected measured velocities and the no-slip theoretical velocity decrease from 45.8% to 10%, and the measured slip length on hy-drophilic glass is revised from 75 nm to 16 nm. These results indicated that the particle size and the biased particle concentration distribution can significantly affect near wall velocity measurement via microPIV/PTV, and result in larger measured velocity and slip length close to wall.