咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >LONG-TERM RIGOROUS NUMERICAL I... 收藏

LONG-TERM RIGOROUS NUMERICAL INTEGRATION OF NAVIER-STOKES EQUATION BY NEWTON-GMRES ITERATION

LONG-TERM RIGOROUS NUMERICAL INTEGRATION OF NAVIER-STOKES EQUATION BY NEWTON-GMRES ITERATION

作     者:Julius Rhoan T.Lustro Lennaert van Veen Genta Kawahara 

作者机构:College of Engineering and Agro-Industrial TechnologyUniversity of the Philippines Los Banos Faculty of ScienceUniversity of Ontario Institute of Technology Department of Mechanical Science and BioengineeringOsaka University1-3 Machikaneyama 

出 版 物:《Transactions of Nanjing University of Aeronautics and Astronautics》 (南京航空航天大学学报(英文版))

年 卷 期:2013年第30卷第3期

页      面:248-251页

核心收录:

学科分类:080103[工学-流体力学] 08[工学] 080104[工学-工程力学] 0802[工学-机械工程] 0825[工学-航空宇航科学与技术] 0704[理学-天文学] 0801[工学-力学(可授工学、理学学位)] 

主  题:long-term numerical integration Newton-Raphson iteration general minimal residual(GMRES) multiple shooting unstable manifold 

摘      要:The recent result of an orbit continuation algorithm has provided a rigorous method for long-term numerical integration of an orbit on the unstable manifold of a periodic *** algorithm is matrix-free and employs a combination of the Newton-Raphson method and the Krylov subspace ***,the algorithm adopts a multiple shooting method to address the problem of orbital instability due to long-term numerical *** algorithm is described through computing the extension of unstable manifold of a recomputed Nagata′s lowerbranch steady solution of plane Couette flow,which is an example of an exact coherent state that has recently been studied in subcritical transition to turbulence.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分