咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Multi-objective robot motion p... 收藏

Multi-objective robot motion planning using a particle swarm optimization model

Multi-objective robot motion planning using a particle swarm optimization model

作     者:Ellips MASEHIAN Davoud SEDIGHIZADEH 

作者机构:Faculty of EngineeringTarbiat Modares University 

出 版 物:《Journal of Zhejiang University-Science C(Computers and Electronics)》 (浙江大学学报C辑(计算机与电子(英文版))

年 卷 期:2010年第11卷第8期

页      面:607-619页

核心收录:

学科分类:0810[工学-信息与通信工程] 080202[工学-机械电子工程] 08[工学] 0804[工学-仪器科学与技术] 0805[工学-材料科学与工程(可授工学、理学学位)] 0802[工学-机械工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Robot motion planning Particle swarm optimization Probabilistic roadmap Genetic algorithm 

摘      要:Two new heuristic models are developed for motion planning of point robots in known *** first model is a combination of an improved particle swarm optimization (PSO) algorithm used as a global planner and the probabilistic roadmap (PRM) method acting as a local obstacle avoidance *** the PSO component,new improvements are proposed in initial particle generation,the weighting mechanism,and position-and velocity-updating ***,two objective functions which aim to minimize the path length and oscillations,govern the robot’s movements towards its *** PSO and PRM components are further intertwined by incorporating the best PSO particles into the randomly generated *** second model combines a genetic algorithm component with the PRM *** this model,new specific selection,mutation,and crossover operators are designed to evolve the population of discrete particles located in continuous *** comparisons of the developed models with each other,and against the standard PRM method,show the advantages of the PSO method.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分