Two-Variable Hermite Polynomial Excitation of Two-Mode Squeezed Vacuum State as Squeezed Two-Mode Number State
Two-Variable Hermite Polynomial Excitation of Two-Mode Squeezed Vacuum State as Squeezed Two-Mode Number State作者机构:Department of Physics Shanghai Jiao Tong University Shanghai 200030 China
出 版 物:《Communications in Theoretical Physics》 (理论物理通讯(英文版))
年 卷 期:2008年第50卷第10期
页 面:965-970页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0704[理学-天文学] 0701[理学-数学] 0702[理学-物理学]
基 金:National Natural Science Foundation of China under Grant Nos.10775097,10874174 and 10647133 the Natural Science Foundation of Jiangxi Province under Grant Nos.2007GQS1906 and 2007GZS1871 the Research Foundation of the Education Department of Jiangxi Province under Grant No.22
主 题:Two variable Hermite polynomial excitation state Wigner function marginal distribution tomgram
摘 要:We find that the squeezed two-mode number state is just a two-variable Hermite polynomial excitation of thetwo-mode squeezed vacuum state (THPES).We find that the Wigner function of THPES and its marginal distributionsare just related to two-variable Hermite polynomials (or Laguerre polynomials) and that the tomogram of THPES canbe expressed by one-mode Hermite polynomial.