咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >对比主成分分析的近红外光谱测量及其在水果农药残留识别中的应用 收藏

对比主成分分析的近红外光谱测量及其在水果农药残留识别中的应用

Application of Near Infrared Spectroscopy Combined with Comparative Principal Component Analysis for Pesticide Residue Detection in Fruit

作     者:陈淑一 赵全明 董大明 CHEN Shu-yi;ZHAO Quan-ming;DONG Da-ming

作者机构:河北工业大学电子信息工程学院天津300401 北京农业智能装备技术研究中心北京市农林科学院北京100097 

出 版 物:《光谱学与光谱分析》 (Spectroscopy and Spectral Analysis)

年 卷 期:2020年第40卷第3期

页      面:917-921页

核心收录:

学科分类:083002[工学-环境工程] 0830[工学-环境科学与工程(可授工学、理学、农学学位)] 07[理学] 08[工学] 09[农学] 0804[工学-仪器科学与技术] 0903[农学-农业资源与环境] 0703[理学-化学] 0702[理学-物理学] 0713[理学-生态学] 

基  金:国家自然科学基金优秀青年科学基金项目(31622040)资助 

主  题:近红外 cPCA 数据降维 模型建立 

摘      要:近红外光谱(NIR)分析具有测试方便、不破坏样本、响应快速等优势,但是,由于在谱带分布和结构分析中存在着许多复杂因素,使得在提取特征光谱信息时存在许多困难。现阶段,虽然已经有多种光谱数据降维方式被广泛使用,但是这些传统的数据降维方式都有一个局限性,就是数据的降维仅仅针对于一个数据集,当数据集中有多个关键因素形成干扰时,数据降维和分类的结果往往不是很理想,得不到想要分析的信息。这一问题造成了在分析近红外光谱时建立的数据降维模型极差,无法正确的对样品进行预测分类。对比主成分分析(contrastive principle component analysis, cPCA)是一种基于主成分分析(PCA)的改进算法,起源于对比学习,并应用于基因组信息解析。cPCA算法的优势就是能够将一个数据集中的降维推广到两个相关联数据集之间的降维,从而能够得到数据集中的关键信息。将cPCA算法应用于近红外光谱处理中,建立了准确的近红外光谱数据降维模型。在实验验证中,使用cPCA算法对不同类型水果(苹果和梨)表面农药残留进行分析。结果表明,在对不同类型的水果进行农药残留分析时,使用PCA算法进行数据降维只能区分出不同的水果类型,而水果表面是否喷洒农药这一关键的特征信息并不能分析出来;而使用cPCA算法进行数据降维分析时,由于对背景光谱的约束作用,能够清晰的将有无喷洒农药的样本分类。这说明了, cPCA在近红外光谱数据降维中有着明显的优势,解决了近红外光谱数据降维模型中数据集受限和特征信息的提取问题,进而建立准确的近红外光谱数据降维模型。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分