Forecasting Damage Mechanics By Deep Learning
作者机构:CIRTech InstituteHo Chi Minh City University of Technology(HUTECH)Ho Chi Minh CityVietnam Department of Architectural EngineeringSejong University209 Neungdong-roGwangjin-guSeoulKorea Institute of Structural MechanicsBauhaus-Universität Weimar99423WeimarGermany Department of Physical TherapyGraduate Institute of Rehabilitation ScienceChina Medical UniversityTaichung40402Taiwan
出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))
年 卷 期:2019年第61卷第9期
页 面:951-977页
核心收录:
学科分类:0831[工学-生物医学工程(可授工学、理学、医学学位)] 0502[文学-外国语言文学] 050201[文学-英语语言文学] 05[文学] 0808[工学-电气工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 0805[工学-材料科学与工程(可授工学、理学学位)] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 0801[工学-力学(可授工学、理学学位)]
主 题:Damage mechanics time series forecasting deep learning long short-term memory multi-layer neural networks hydraulic fracturing
摘 要:We in this paper exploit time series algorithm based deep learning in forecasting damage mechanics *** methodologies that are able to work accurately for less computational and resolving attempts are a significant demand *** on learning an amount of information from given data,the long short-term memory(LSTM)method and multi-layer neural networks(MNN)method are applied to predict *** examples are implemented for predicting fracture growth rates of L-shape concrete specimen under load ratio,single-edge-notched beam forced by 4-point shear and hydraulic fracturing in permeable porous media problems such as storage-toughness fracture regime and fracture-height growth in Marcellus *** predicted results by deep learning algorithms are well-agreed with experimental data.