咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Unsupervised Anomaly Detection... 收藏

Unsupervised Anomaly Detection via DBSCAN for KPIs Jitters in Network Managements

作     者:Haiwen Chen Guang Yu Fang Liu Zhiping Cai Anfeng Liu Shuhui Chen Hongbin Huang Chak Fong Cheang 

作者机构:College of Computer ScienceNational University of Defense TechnologyChangshaChina School of Data Science and Computer ScienceSun Yat-sen UniversityGuangzhouChina College of Information and EngineeringCentral South UniversityChangshaChina Faculty of Information TechnologyMacao University of Science and TechnologyMacao 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2020年第62卷第2期

页      面:917-927页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Anomaly detection KPIs unsupervised learning algorithm 

摘      要:For many Internet companies,a huge amount of KPIs(e.g.,server CPU usage,network usage,business monitoring data)will be generated every *** to closely monitor various KPIs,and then quickly and accurately detect anomalies in such huge data for troubleshooting and recovering business is a great challenge,especially for unlabeled *** generated KPIs can be detected by supervised learning with labeled data,but the current problem is that most KPIs are *** is a time-consuming and laborious work to label anomaly for company *** an unsupervised model to detect unlabeled data is an urgent need at *** this paper,unsupervised learning DBSCAN combined with feature extraction of data has been used,and for some KPIs,its best F-Score can reach about 0.9,which is quite good for solving the current problem.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分