On product affine hyperspheres in R^n+1
在产品上在 n+1 的仿射的超球面作者机构:School of Mathematics and StatisticsZhengzhou UniversityZhengzhou 450001China Henan Key Laboratory of Financial EngineeringZhengzhou 450001China Department of MathematicsKU LeuvenLeuven 3001Belgium Institut des Sciences et Techniques de Valenciennes(ISTV)Universit´e Polytechnique Hauts de FranceValenciennes 59313France
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2020年第63卷第10期
页 面:2055-2078页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by National Natural Science Foundation of China(Grant No.11771404)
主 题:affine hypersurface affine metric affine hypersphere Levi-Civita connection constant sectional curvature parallel Ricci tensor
摘 要:In this paper,we study locally strongly convex affine hyperspheres in the unimodular affine space Rn+1 which,as Riemannian manifolds,are locally isometric to the Riemannian product of two Riemannian manifolds both possessing constant sectional *** the main result,a complete classification of such affine hyperspheres is ***,as direct consequences,3-and 4-dimensional affine hyperspheres with parallel Ricci tensor are also classified.