可见光谱图与深度神经网络的垩白大米检测方法
Research on Chalky Rice Detection Based on Visible Spectrogram and Deep Neural Network Technology作者机构:盐城工学院电气工程学院江苏盐城224051 四川农业大学电机学院四川雅安625014
出 版 物:《光谱学与光谱分析》 (Spectroscopy and Spectral Analysis)
年 卷 期:2020年第40卷第1期
页 面:233-238页
核心收录:
学科分类:082804[工学-农业电气化与自动化] 08[工学] 0828[工学-农业工程]
基 金:国家自然科学基金项目(31601227,31501221,61803325) 江苏省自然科学基金项目(BK20161310,BK20181049)资助
摘 要:针对传统垩白大米检测主观随意性大、可重复性低、检测过程耗时费力、准确率低等问题,提出一种基于可见光谱图结合深度学习算法的垩白大米检测手段。用CCD彩色摄像机获取垩白大米和正常大米可见光谱图,对图像进行旋转、翻转以及调整对比度等随机图像变换方式提升网络训练数据集,防止深度检测模型在学习过程中出现过拟合现象。构建了7层深层次卷积神经网络模型,包括卷积层、池化层、全连接层和输入输出层,通过网络模型对采样的大米可见光谱图集进行卷积与池化操作,采用迭代学习训练方法获取大米可见光谱图在卷积层输出的特征参数,采用连接非线性ReLU激活函数来降低训练时间,以加速大米可见光谱图有效抽象特征提取的收敛速度;然后将深度神经网络嵌入池化层,对大米特征降维以获取能够表达正常大米和垩白大米可鉴别显著意义特征;最后在全连接层输出进行分类,从而实现对垩白大米的精确识别。基于可见光谱图的大米垩白深度检测方法比传统基于可见光谱图的垩白大米鉴别特征提取方法免去了复杂的特征提取步骤,由于卷积网络提取的特征对特定目标具有更鲁棒的表达,算法精度较高且复杂度比较小,泛化效果更好,获得识别精度达到90%,比基于传统特征提取的垩白大米鉴别方法识别精度高, SIFT+SVM, PHOG+SVM和GIST+SVM模型识别精度分别为70.83%, 77.08%和79.16%。提出的方法为当前我国现代农业生产中实现大米品质自动化快速精准检测提供了理论依据和有效的技术手段,对于现阶段实现大米品质人工智能检测产生实际意义。