咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A multi-scale convolutional au... 收藏

A multi-scale convolutional auto-encoder and its application in fault diagnosis of rolling bearings

一种多尺度卷积自编码网络及其在滚动轴承故障诊断中的应用(英文)

作     者:Ding Yunhao Jia Minping 丁云浩;贾民平

作者机构:School of Mechanical EngineeringSoutheast UniversityNanjing 211189China 

出 版 物:《Journal of Southeast University(English Edition)》 (东南大学学报(英文版))

年 卷 期:2019年第35卷第4期

页      面:417-423页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 080203[工学-机械设计及理论] 0835[工学-软件工程] 0802[工学-机械工程] 0811[工学-控制科学与工程] 080201[工学-机械制造及其自动化] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:The National Natural Science Foundation of China(No.51675098) 

主  题:fault diagnosis deep learning convolutional auto-encoder multi-scale convolutional kernel feature extraction 

摘      要:Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional *** this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled *** on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed *** results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,*** addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional *** final results show that the proposed model has a better recognition effect for rolling bearing fault data.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分