喘鸣音的声谱图熵特征分析及检测
Wheeze detection method based on spectrogram entropy analysis作者机构:中国科学院声学研究所水下航行器信息技术重点实验室北京100190 中国科学院大学北京100149
出 版 物:《声学学报》 (Acta Acustica)
年 卷 期:2020年第45卷第1期
页 面:131-136页
核心收录:
学科分类:0711[理学-系统科学] 12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
摘 要:提出了一种改进的基于肺音信号的声谱图熵特征分析的客观喘鸣音检测方法。喘鸣音的功率明显高于正常肺音,因此喘鸣音声谱图的功率分布沿频率轴方向具有明显的聚集特性,该特性可以通过熵值反映。本算法首先对肺音信号进行时频变换得到时频幅度谱信号,然后去除基本呼吸音,进而计算其熵特性曲线并提取熵特性曲线的相应特征.最后,通过支持向量机(support vector machine,SVM)训练分类器,实现了喘鸣音的有效检测。该方法通过预处理使熵特性曲线的特征差异更加明显,且通过SVM分类器进行检测,解决了原方法检测存在检测模糊区域的问题。实验结果表明,该算法在两组测试集的检测准确率分别为97.1%和95.7%,检测率较高,具有良好的应用前景。