一种应用于KBQA关系检测的多视角层次匹配网络
Multi-view Hierarchical Matching Network for KBQA Relation Detection作者机构:上海理工大学光电信息与计算机工程学院
出 版 物:《小型微型计算机系统》 (Journal of Chinese Computer Systems)
年 卷 期:2020年第41卷第1期
页 面:12-18页
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金项目(61703278)资助 上海市科委科研计划项目(17511107203)资助 国家重点研发计划项目(2018YFB1700902)资助
摘 要:知识库问答(KBQA)是指利用知识库中的一个或多个知识三元组回答一个自然语言问题,需要检测问题中提及的知识库实体和关系.关系检测是知识库问答的核心.为了解决现有关系检测方法存在的匹配视角单一和信息瓶颈问题,本文提出了一种多视角层次匹配网络(M-HMN,Multi-view Hierarchical Matching Network),M-HMN利用双向注意力机制对齐问题与候选关系的不同特征,强化两者匹配部分的观察精细度,将匹配信息封装成向量,再由自注意力机制有效聚合多个向量以进行正确关系检测.对于KBQA最终任务的评估,本文提出一种简易的实体重排序算法,利用M-HMN网络优化候选实体集.实验结果表明,M-HMN能有效缓解关系检测的信息瓶颈问题,而提出的实体重排序算法能够进行实体消歧,获得更小更为精准的候选实体集,对KBQA最终任务性能有显著的提升.