大群体应急决策中考虑专家犹豫的不完全信息补值方法
Incomplete Information Complement Method Based on the Hesitation of Experts in Large-group Emergency Decision Making作者机构:中南大学商学院湖南长沙410083
出 版 物:《信息与控制》 (Information and Control)
年 卷 期:2019年第48卷第6期
页 面:678-686,693页
核心收录:
学科分类:12[管理学] 120202[管理学-企业管理(含:财务管理、市场营销、人力资源管理)] 0202[经济学-应用经济学] 02[经济学] 1202[管理学-工商管理] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金资助项目(71671189,71971217) 国家自然科学基金重点资助项目(71790615)
主 题:微博大数据 犹豫不完全偏好 补值方法 属性关联 大群体应急决策
摘 要:针对特大突发事件应急决策中大群体专家存在偏好信息不完全的问题,提出了一种新的不完全偏好信息大群体应急决策方法.首先,利用TF-IDF(term frequency-inverse document frequency)算法对特大突发事件相关的微博大数据文本流进行关键词提取,获取事件属性及其权重;其次,根据专家给出的偏好信息计算专家的犹豫度,进而获得专家的权重;再次,根据不完全偏好信息矩阵进行属性关联测度和方案接近度测度,提出了基于属性关联和方案接近度的新的补值模型,获得完全偏好信息矩阵;然后,结合专家权重和属性权重进行信息集结和方案择优;最后,通过江西洪涝灾害事件验证所提方法的可行性和有效性.