咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >The algebraic structure of dis... 收藏

The algebraic structure of discrete zero curvature equations associated with integrable couplings and application to enlarged Volterra systems

The algebraic structure of discrete zero curvature equations associated with integrable couplings and application to enlarged Volterra systems

作     者:LUO Lin FAN EnGui 

作者机构:Department of MathematicsShanghai Second Polytechnic UniversityShanghai 201209China School of Mathematical SciencesFudan UniversityShanghai 200433China Department of MathematicsXiaogan UniversityXiaogan 432100China 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2009年第52卷第1期

页      面:147-159页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:supported by the National Key Basic Research Project of China (Grant No. 2004CB318000) the Research Foundation of Hubei Provincial Department of Education (Grant No. D20082602) 

主  题:discrete zero curvature equation integrable couplings τ-symmetry algebra 35Q51 

摘      要:An algebraic structure of discrete zero curvature equations is established for integrable coupling systems associated with semi-direct sums of Lie algebras. As an application example of this algebraic structure, a τ-symmetry algebra for the Volterra lattice integrable couplings is engendered from this theory.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分