高斯核密度估计方法检测健康数据异常值
Gaussian Kernel Density Estimation Method for Detecting Abnormal Values of Health Data作者机构:江南大学物联网工程学院
出 版 物:《计算机科学与探索》 (Journal of Frontiers of Computer Science and Technology)
年 卷 期:2019年第13卷第12期
页 面:2094-2102页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:运动手环 健康数据 异常值检测 局部异常因子 高斯核密度估计
摘 要:针对智能穿戴设备普及背景下,利用运动手环采集的活动数据存在未知异常数据的问题,提出一种基于高斯核密度估计的健康数据异常值检测方法。首先采用t-分布邻域嵌入算法对数据集进行特征提取,增强数据局部结构能力;接着利用高斯核局部密度代替局部异常因子算法中的局部可达密度,提出基于高斯核密度估计离群因子(GKDELOF)算法,推导分析了该算法判断阈值的稳定性;最后在UCI标准数据集上进行仿真实验,验证算法的准确性,并在选取的真实运动手环所采集的活动数据集上进行实验分析。实验结果表明,该方法能够解决由活动复杂多样性造成的健康数据稀疏问题,准确检测出异常值。