咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Modeling Stock Market Volatili... 收藏

Modeling Stock Market Volatility Using GARCH Models: A Case Study of Nairobi Securities Exchange (NSE)

Modeling Stock Market Volatility Using GARCH Models: A Case Study of Nairobi Securities Exchange (NSE)

作     者:Arfa Maqsood Suboohi Safdar Rafia Shafi Ntato Jeremiah Lelit 

作者机构:Department of Statistics University of Karachi Karachi Pakistan Actuarial Science and Risk Management University of Karachi Karachi Pakistan 

出 版 物:《Open Journal of Statistics》 (统计学期刊(英文))

年 卷 期:2017年第7卷第2期

页      面:369-381页

学科分类:1002[医学-临床医学] 100214[医学-肿瘤学] 10[医学] 

主  题:Nairobi Securities Exchange (NSE) Symmetric and Asymmetric GARCH Models Volatility Leverage Effect 

摘      要:The aim of this paper is to use the General Autoregressive Conditional Heteroscedastic (GARCH) type models for the estimation of volatility of the daily returns of the Kenyan stock market: that is Nairobi Securities Exchange (NSE). The conditional variance is estimated using the data from March 2013 to February 2016. We use both symmetric and asymmetric models to capture the most common features of the stock markets like leverage effect and volatility clustering. The results show that the volatility process is highly persistent, thus, giving evidence of the existence of risk premium for the NSE index return series. This in turn supports the positive correlation hypothesis: that is between volatility and expected stock returns. Another fact revealed by the results is that the asymmetric GARCH models provide better fit for NSE than the symmetric models. This proves the presence of leverage effect in the NSE return series.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分